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Abstract-The  large  number  of  object  categories  and  many  overlapping  or  closely

neighboring objects in large-scale urban scenes pose great challenges in point cloud

classification. Most works in deep learning have achieved a great success on regular

input representations, but not much work has been done in deep learning on point

clouds due to the irregularity and inhomogeneity of the data. In this paper, a deep

neural network with spatial pooling (DNNSP) is proposed to classify large-scale point

clouds  without  rasterization.  The  DNNSP  first  obtains  the  point-based  feature

representation.  Then the distance minimum spanning tree (DMst)-based pooling is

applied  in  the  point  feature  representation  process  to  recognize  and  describe  the

spatial  information  among  the  points  in  the  point  clusters.  The  body  points  and

marginal  points  in  the  DNNSP  are  handled  separately  by  configuring  different

weights for them in the feature representation. In this way, the DNNSP can learn the

feature representations of points scaled from the entire regions to the centers of the

point clusters, which makes the point cluster-based feature representations robust and

discriminative. The proposed approach achieves high classification performance on

different  types  of  point  clouds  and  significantly  outperforms  other  methods.  we

handle 
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1. Introduction

With the rapid advances in laser scanning technology, classification of point clouds

of large-scale urban scenes efficiently and accurately is of major importance in the

remote sensing and computer vision fields (Yang et al., 2015b). To classify the input

point clouds, most existing approaches (Frome et al., 2004; Li et al., 2016; Weinmann
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et al., 2015; Zhang et al., 2013; Wang et al., 2015; Xiong et al., 2011; Yang et al.,

2015a; Zhang et al., 2016; Xu et al., 2017; Zheng et al., 2017) utilize hand-crafted

features for each modality independently and combine them in a heuristic manner.

These  approaches  fail  to  adequately  utilize  the  consistent  and  complementary

information  among  features,  which  are  difficult  to  capture  high-level  semantic

structures.  Although  the  features  learned  from most  of  the  current  deep  learning

methods (Bengio et al., 2013; Fukano and Masuda, 2015; Guo et al., 2015; Kragh et

al., 2015) can generate high-quality image classification results, these methods do not

adequately recognize fine-grained patterns to complex scenes due to the unorganized

distribution and uneven point density of the data. 

In contrast to images whose spatial relationships among pixels can be captured by

sliding windows, the points in a point cloud are unorganized, and the point density is

uneven. Through rasterizing the 3D point cloud, spatial relationships and correlations

among  points  can  be  recognized.  Then,  deep  learning  technology  is  fit  to  the

rasterized point cloud or 3D models (Maturana and Scherer, 2015a, b; Wu et al., 2015;

Zhu et al., 2014). On the one hand, such methods work well for dense and even point

clouds, but they have limitations for large-scale urban scenes in which rasterization is

difficult to design for all of the objects, given the uneven point densities and missing

data.  The  potential  of  deep  learning  techniques  for  large-scale  point  cloud

classification is still relatively unexplored. On the other hand, the rasterization process

also  loses  a  large  amount  of  valuable  information  about  the  shape  and geometric

layout of the objects. 

With the original 3D point cloud data, we can more precisely determine the shape,

size  and  geometric  orientation  of  the  objects  (Koppula  et  al.,  2011).  Moreover,

augmenting  spatial  cues  with 3D information can enhance  the  object  detection  in

cluttered, real world environments  (Golovinskiy et al., 2009). In this paper, a deep

neural  network  with  spatial  pooling  (DNNSP)  that  exploits  the  rich  relational

information of the points is proposed for large-scale point cloud classification. The

DNNSP can handle the raw point cloud without rasterization. Experimental results on

various point clouds demonstrate that our approach outperforms other methods.  The

spatial pooling layers in the deep neural network significantly boost the classification

performance.

2. Related Work

Many recent  methods  have  utilized  features  such as  spin  images  (Johnson and
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Hebert, 1999), eigenvalues, shape and geometry features (Fukano and Masuda, 2015;

Pu et  al.,  2011) for point cloud classification.  Chehata et  al.  (2009) classify point

clouds by using random forests  with 21 features that can be categorized into five

categories.  Guo et al. (2015) utilize JointBoost with 26 features to classify outdoor

point clouds into five classes, such as buildings, vegetation, grounds, electric wires

and pylons.  Kragh et al. (2015)  use an SVM classifier with 13 features to classify

point  clouds.  Brodu  and  Lague  (2012) extract  multi-scale  features  from different

neighborhoods  for  classifying  vegetation,  rocks,  water  and  grounds.  Zhang  et  al.

(2013) cluster point clouds by using a region growing algorithm and then use the

SVM classifier with features of geometry, echoes, radiation degrees and topology of

the clusters for point cloud classification.  Zhang et al. (2015) utilize the Conditional

Random Field (CRF) for scene semantic segmentation by fusing point clouds with

images.  Niemeyer  et  al.  (2016) present  a  two-layer  CRF that  can  incorporate  the

context with different scales. The used or obtained features in the above methods are

sensitive  to  local  geometric  noise,  and they  do not  adequately  capture  the  global

structure of the shape (Xie et al., 2015). 

The deep learning can automatically jointly learn features and classifiers from the

data  (Stuhlsatz  et  al.,  2012) and  has  shown  flexibility  and  capability  in  many

applications, such as image classification  (Krizhevsky et  al.,  2012), scene labeling

(Farabet et al., 2013) and shape retrieval (Zhu et al., 2014). Deep learning algorithms,

which  exploit  the  unknown  structure  in  the  input  distribution  to  discover  good

representations, have been widely applied in 3D object recognition tasks on 3D data

such  as  3D  models  and  RGB-D  images.  Wu  et  al.  (2015) use  volumetric

Convolutional Neural Network (CNN) architectures on 3D voxel grids to represent a

geometric 3D shape for object classification and retrieval. In  Zhu et al.  (2014), the

input  is  the  depth  images  with  different  perspectives  of  3D  objects,  and  the

autoencoder with pre-training by the DBN is applied to extract features. In Xie et al.

(2015),  an  auto-encoder  that  imposes  the  Fisher  discrimination  criterion  on  the

neurons in the hidden layer is used to extract a 3D shape descriptor. In Socher et al.

(2012),  the  convolutional  and  recursive  neural  networks  are  utilized  for  object

reorganization in RGB-D images. There are few studies of point cloud classification

using deep learning. Guan et al. (2015) classify 10 species of trees by using DBN for

the vertical profile of the tree point clouds. Based on a 2D CNN, a 3D CNN for an

object  binary  classification  task with  LiDAR data  is  proposed (Prokhorov, 2010).

Maturana and Scherer (Maturana and Scherer, 2015a) introduce 3D CNNs for landing
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zone detection from LiDAR data. To tackle an object recognition task with LiDAR

and  RGBD  point  clouds  from  different  modalities,  a  volumetric  occupancy  grid

representation is integrated with a supervised 3D CNN to improve the performance in

(Maturana  and Scherer,  2015b).  To make 3D CNN architectures  fully  exploit  the

power  of  3D  representations,  Qi  et  al.  (2016) introduce  two  distinct  network

architectures of volumetric CNNs for object classification on 3D data. Huang and You

(2016) introduce  a  3D  CNN  for  recognizing  dense  voxels  generated  from  point

clouds. Qi et al. (2017) further present a deep learning approach, named PointNet, for

point cloud classification and segmentation. This approach learns a spatial encoding

of each point and then aggregates all the point-based features to a global point cloud

feature.  It  has  the  ability  to  directly  work  on  the  input  point  cloud.  The  main

disadvantage is that the PointNet fails to capture local structure induced by the metric

space, which constrains its ability to obtain fine-grained patterns to complex scenes.

Liu  et  al.  (2017)  present  a  deep  reinforcement  learning  framework  for  semantic

parsing large-scale point clouds. Most of the parameters in the framework are learned,

and  the  class  object  localization  and  segmentation  are  accurate  and  automatic.  A

shallow 3D CNN can be well trained on a small 3D voxel grids which are converted

from the  point  cloud.  Yet,  it  is  hard  to  learn  discriminative  features.  In  order  to

improve the training accuracy, we may increase the layers of the 3D CNN, and use of

the ResNet (He et al., 2016) to alleviate the vanishing-gradient problem caused by the

increase  of  the  CNN  layers.  However,  training  the  3D  CNN  with  more  layers

consumes large computer memories, and often leads to the memory overflow. 

3. The DNNSP Framework

In this section, we main describe the process for generating the DNNSP. First, the

basic architecture of our approach for point cloud classification is overviewed. Then,

the point-based feature representation is  derived for  representing each point-based

feature. Next, the spatial pooling is formed to capture the spatial information of the

points.  Finally, the  setting  of  the  DNNSP is  described  to  implement  point  cloud

classification.

3.1. Basic Architectures for Point Cloud Classification 

The features of the points can be directly input to a neural network. However, it is

difficult  to  utilize  the  spatial  structure  among  the  points  to  achieve  high-quality

classification results. Thus, we obtain the point cluster-based features to describe the
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spatial  relationships  among  the  points  in  the  point  cluster.  To  achieve  this,  the

point-based feature descriptors of all the points in each point cluster are taken as an

input of the DNNSP. The DNNSP then learns the point cluster-based features from the

descriptors in each point cluster.

Considered that the terrain points can be separated from the on-ground objects on

them (Chen et al., 2013), the aim of this paper is to classify the ground objects on the

terrain points. The removal of the terrain points helps to determine the connectivity of

on-ground objects.  In the on-ground point clouds, we search the  k1  (k1  is an integer)

closest points of each point, and connect the point with its k1 closest points by edges.

In this way, an undirected graph G(V, E) is generated, where V is the set of the points

and  E is the set  of the corresponding edges. The Euclidean distance between two

connected points is taken as the weight of the edge. After  G is generated, all of the

connected components of  G can be found. Since objects are often close to others in

cluttered urban scenes, a connected component can contain more than one object. In a

connected component, a local maximum point may represent the top of an object. To

further break the connected component into smaller pieces so that single objects can

be isolated,  a  moving window algorithm is  applied  to  search  the  local  maximum

points. When the local maximum points are found, the graph cut (Boykov et al., 2000)

is employed to segment the connected component, and the local maximum points are

taken as seeds. After the graph cut is performed, the connected component is divided

into several point clusters. Each of the point clusters may still contain more than one

object. Motivated by the fact that the normalized cut (Shi, J. and Malik, 2000) can

aggregate the points with uniform distribution into one cluster, it has been employed

here to partition a large point cluster into two new clusters under the condition that the

number of points in the cluster is larger than a pre-defined threshold. In this way, we

construct multi-level point clusters to capture the coarse to fine parts of the objects.

The size of each point cluster is determined by the point density and the object size.

Here, three levels are used. 

We utilize our previous method (Zhang et al., 2016) to construct the point-based

feature descriptors and the point clusters. For each point, a feature vector with 18

dimensions, which contains the eigenvalue feature with 6 dimensions and the spin

image feature with 12 dimensions, is computed through its  k-nearest neighborhood

points,  where  k =  30,  60 and 90,  respectively. Thus,  we obtain  a  54-dimensional

feature vector for each point. Finally, the features of the points in a point cluster are

aggregated into an  n×54 feature matrix, where  n is the point number of the cluster.
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The feature matrix is taken as an input of the DNNSP. In the training process, the

clusters of all levels are utilized to create a more discriminative feature representation.

In the testing stage, we only classify the points in the clusters with the finest level.

The aim is to reduce the probability that a cluster contains more than one class.

To address the input, the DNNSP should be invariant to the point permutation and

sizes of the input point clusters. Therefore, a simple way to achieve this goal is to

determine a point-based feature representation by the multilayer perceptron (MLP)

and retain the weight sharing for each point, which means the weight of each point in

the same layer is the same. Then, max pooling is employed to aggregate them into the

cluster-based features. Finally, the cluster-based features are put into another MLP for

point  cloud  classification.  The  architectures  for  the  point  cloud  classification  are

shown in Fig. 1. In Fig. 1, the point-based feature representation process by the MLP

is illustrated in the yellow rectangle. The numbers in the brackets are the layer sizes of

the MLP. Based on the architectures, we will expand them in the following sections.

Fig. 1. The overview of the proposed approach for point cloud classification.

3.2. Point-based Feature Representations

The spin images and eigenvalue feature descriptors describe different characteristic

of a point. Since the intra-relations between the same type of feature descriptors is

closer  than  the  inter-relation  between  different  types  of  feature  descriptors,  the

representations of the spin images and eigenvalue features are learned separately by

the MLP. They are concatenated and then further processed by another MLP to obtain

the feature representations of each point in the point clusters. The process is shown in

Fig. 2.
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Fig. 2. The point-based feature representation process.

3.3. Spatial Pooling

In the point-based feature descriptors, the spatial relationships among the points

have not been considered. It is essential to find the local spatial layout of the points in

the point cloud. 

To find the spatial layout of the points, the distance minimum spanning tree (DMst)

(Wang et al., 2015) is utilized to organize the points in each point cluster by taking the

point  nearest  to  the  center  of  the  point  cluster  as  the  root  node.  The  DMst  is  a

spanning tree, which combines the advantages of the minimum spanning tree (MST)

and the spanning tree obtained by the Dijkstra algorithm. The MST is a spanning tree

in which the sum of the edge weights is no larger than those of any other spanning

tree. Its main advantage is that it can preserve the local spatial structure of the point

cloud.  The  Dijkstra  algorithm is  a graph-based  search  algorithm which  solves  the

single-source shortest path problem. It does so by producing a tree that minimizes the

sum of the edge weight from each vertex to the single-source vertex, which is the root

node. this approach gives a good approximation of tree skeletons even if the point

cloud is incomplete or noisy. Unfortunately, the Dijkstra algorithm cannot describe

the  spatial  distribution  of  points  in  local  regions.  Since  the  DMst  integrates  the

advantages of the above two types of trees, the leaf nodes and the nodes that connect

with the leaf nodes in the DMst are usually the marginal points of a point cluster,

because the marginal points are usually diffused and far away from the center of the

cluster. The remaining nodes are the body points. 

Next, we separately handle the body points and marginal points in the DNNSP by

configuring different weights for them in the feature representation. In this way, the

cluster–based features contain two parts: one part arises from the marginal points and

another arises from the body points. A spatial pooling layer is followed behind each

layer in the MLP of the point-based feature representation process. In this layer, the

average pooling is operated to extract the feature representations of a point (i.e., a

node in the DMst) and its connected points. It is noted that the DMst-based spatial
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pooling is operated on all points in each cluster. The connected points of a DMst node

in the cluster can contain the marginal points and body points. Thus, the information

of each node within the cluster can flow to the points that are connected to it. 

Fig. 3(a) shows the architecture of the DNNSP, and the details in the red and orange

boxes are shown in Fig. 3 (b) and (c). To simplify the description, the network in one

red box is called Net REF (Net for representation for each type of feature), and the

network in one orange box is called Net RAF (Net for representation for each type of

feature). In addition,  the  weights  of  the same type  of  features  in  body points  (or

marginal points) are shared in each layer of the DNNSP.  

 

(a) The architectures of the DNNSP.

(b) The details in the red box of (a).

(c) The details in the orange box of (a)

Fig. 3 The architecture of the DNNSP. RE stands for the eigenvalue feature descriptor.

RSI stands for the spin image descriptor. RAF stands for the final point-based feature

representation.

3.4. Implementation

In the DNNSP, the activation function is the min(5, elu(x)). The method in He et al.

(2015) is utilized for initialization, and the Batch Normalization (Ioffe and Szegedy,

2015) is used before the activation. We apply the stochastic gradient descent to train
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the DNNSP with a mini-batch size of 128. The network learning rate is set to 0.001,

and the moment is set to 0.9. In the following experiment, four Net REF and one Net

RAF are used in the DNNSP. 

4. Experimental Results

To evaluate the performance of the DNNSP, the DNNSP is employed to classify

point clouds of six urban scenes. We also compare the DNNSP with the following

four methods. 

The first method (Method I) is the one described in Wang et al. (2015). This method

employs a multi-scale and hierarchical framework to classify point clouds of cluttered

urban scenes.  In  this  framework,  the features  of  point  clusters  are  constructed  by

employing the Latent Dirichlet Allocation (LDA). 

 The second method (Method II) is the one described in Zhang et al. (2016). In this

method, the point cloud is split into hierarchical clusters of different sizes. Then, LDA

and sparse coding are jointly performed to extract and encode the shape features of

the  multilevel  point  clusters.  The  features  at  different  levels  are  used  to  capture

information on the shapes of objects of different sizes. 

 The third method (Method III) is the one described in Guo et al.  (2015).  In this

method,  each  point  is  associated  with  a  set  of  derived  features  using  geometric,

multi-return and intensity information, and the features are selected using JointBoost

to evaluate their correlations.

The fourth method (Method IV) is  the one described in Li  et  al.  (2016).  In this

method,  a  set  of  point-based  descriptors  for  recognizing  urban  point  clouds  is

constructed. The initial 3D labeling of the categories is generated by utilizing a linear

SVM classifier  on  the  descriptors.  These  initial  classification  results  are  globally

optimized  by  the  Multi-label  Graph-cut  approach,  and  then  are  further  refined

automatically  by  a  local  optimization  approach  based  upon  the  object-oriented

decision tree.

4.1. Experimental Datasets

The point clouds of six urban scenes are used in the experiment. 

Scenes I and II: The two scenes come from Tianjin city, China. The point clouds

contain buildings, trees and a few cars. The point density is 20–30 points/m2. The

eaves extend outside the building roofs.  Due to scattering,  numerous noisy points

occur around the eaves, which causes the eaves to be easily misclassified. 

Scene III: The point cloud is the Vaihingen dataset (Niemeyer et al., 2014) provided
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by International Society for Photogrammetry and Remote Sensing, which are covered

by 10 strips. The average strip overlap is 30%. The point cloud mainly contains four

categories, i.e. roofs, facades, shrubs and trees, and low vegetation. The point density

varies considerably over the entire block depending on the overlap. In the regions

covered by only one strip, the mean point density is 4 point/m2. 

The datasets of Scenes I–III are the airborne laser scanning (ALS) point clouds,

obtained by a Leica ALS50 system with a mean flying height of 500 m above the

ground and a 45º field of view.

Scenes IV–VI: The datasets are the terrestrial laser scanning (TLS) point clouds

provided by Eidgenössische Technische Hochschule Zurich (Hackel et al., 2017). The

point density is uneven. The point clouds contain natural terrain, high vegetation, low

vegetation, buildings, hard scape, scanning artefacts and cars.

4.2. Classification Results on the ALS Point Clouds

For Scenes I and II, the method in (Zhang et al., 2016) is utilized to generate the

feature representation and clustering results. For Scene III, we divide the scene into

two separate  parts:  one  for  training  and  the  other  for  testing.  The  point  cloud  is

clustered into multi-level point clusters whose sizes are 60, 120 and 240. 

Table 1 lists the number of points in the training and testing data of Scenes I–III.

Table 2 lists the classification accuracy of the three scenes. Figs. 4–6 illustrate the

training data, testing data and classification results of the three scenes. In Figs. 4 and

5, the green points are on the buildings; the blue points are on the trees, and the red

points are on the cars. In Fig. 6, the navy blue points are on the roofs; the orange

points are on the facades; the light blue points are on the low vegetation; and the

green points  are  on the shrubs  and trees.  In  Figs.  4–6(d),  the gray points are  the

correctly classified points.

Table 1. The number of points in Scenes I-III.

Scene I Building Tree Car

Training data 37847 70540 5410

Testing data 201674 218110 7987

Scene II Building Tree Car

Training data 64952 39743 4584

Testing data 157447 74264 7738

Scene III Roof Shrub and tree Low vegetation Façade

Training data 72582 120009 113344 19758

Testing data 79463 62769 67506 7492
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                     (a)                            (b) 

                 (c)                                 (d)

Fig.  4.  The  training  data,  testing  data  and  classification  results  for  Scene  I.  (a)

Training data. (b) Testing data. (c) Classification results. (d) Highlighted incorrectly

classified points. The green points are on the buildings. The blue points are on the

trees. The red points are on the cars. The gray points are the correctly classified points

in (d).

         

           (a)                               (b)
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(c)                               (d)

Fig.  5.  The  training  data,  testing  data  and  classification  results  of  Scene  II.  (a)

Training data. (b) Testing data. (c) Classification results. (d) Highlighted incorrectly

classified points. The green points are on the buildings. The blue points are on the

trees. The red points are on the cars. The gray points are the correctly classified points

in (d).

      (a)             (b)               (c)              (d) 

Fig.  6. The  training  data,  testing  data  and  classification  results  of  Scene  III..  (a)

Training data. (b) Testing data. (c) Classification results. (d) Highlighted incorrectly

classified points. The navy blue points are on the roofs. The orange points are on the

facades. The light blue points are on the low vegetation. The green points are on the

shrubs and trees. 

Table  2.  Comparisons  of  the  classification  results  of  Scenes  I-III  in  terms  of

precision/recall and accuracy. 

Scene I Building(%) Tree(%) Car(%) Accuracy(%)

our Method 97.7/98.8 99.2/97.7 85.2/98.1 98.2

Method I 94.0/95.4 95.0/94.3 79.1/60.8 94.5

Method II 95.7/96.2 95.9/95.9 80.8/67.9 95.8

Method III 89.7/98.1 97.9/89.1 65.2/46.6 92.9

Method IV 93.5/96.2 95.3/94.1 75.3/84.6 95.1

Scene II Building(%) Tree(%) Car(%) Accuracy(%)

our Method 98.9/98.4 96.2/96.5 78.4/84.9 97.4

Method I 90.3/93.9 97.6/96.5 49.4/42.0 94.1

Method II 94.7/94.5 98.1/97.7 53.9/60.5 95.5

Method III 86.8/91.2 96.8/95.5 44.1/34.8 92.2
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Method IV 92.7/94.0 95.1/92.6 71.2/65.3 94.3

Scene III Roof (%) Shrubs and trees (%) Low vegetation (%) Facade (%) Accuracy (%)

our Method 91.1/96.5 92.5/88.9 94.3/93.7 74.1/61.8 91.9

Method I 75.9/94.1 89.4/72.9 89.1/84.7 51.6/75.7 83.1

Method II 79.7/97.4 86.2/70.0 92.0/87.0 42.3/90.3 84.1

Method III 73.4/91.3 87.8/71.6 87.6/82.3 24.9/51.8 80.3

Method IV 77.8/92.9 86.9/83.8 89.5/74.2 43.6/65.9 82.8

Method I: the method in Wang et al. (2015). Method II: the method in Zhang et al. (2016) .

Method III: the method in Guo et al. (2015). Method IV: the method in Li et al. (2016).

As shown in Figs. 4–6, most of the points are classified correctly, indicating that

the DNNSP can extract good cluster features for the classification. In Scenes I and II,

only the blue blocks in Figs. 4(c) and 3(c) are misclassified. In the blue block of Fig.

4(c), because of the large amount of noise around the eaves, these points look like

they are on a crown. In the blue block of Fig. 5(c), there is a line structure isolated

from the building. The line structure may be on an edge of an eave, and most of the

points on it are misclassified. The classification accuracy of the cars is lower than

those of the buildings and trees. The reason is that there are not sufficient car points in

the training data. This causes the car features of the DNNSP are not well trained. In

Fig. 6, it is observed that most of the misclassified points occur at the object borders,

such as the roofs crowding with the trees or borders between the roofs and facades. In

these  cases,  the neighboring points  may be  on objects  of  a  different  class,  which

causes the point-based features themselves to be less discriminative. However, except

for the border points between the roofs and facades, most of the facade points have

been recognized correctly. 

Because  our  method  can  learn  more  robust  feature  representations  than  other

methods, it achieves the highest classification accuracy except for the tree category in

Scene II and the recall of the facades in Scene III. In the three scenes, it is noted that

the classification accuracies of the cars and facades achieved using our method are

also  higher  than  those  by  using  other  methods,  indicating  that  our  method  is

competitive for classifying the categories with a few points. In Scene III, many of the

roof and facade points are misclassified using other methods. The reason is mainly

because the roof points are confused with the low vegetation points and the facade

points are confused with the shrubs and trees points. However, the four categories are

all classified better than other methods, which verifies that our method can distinguish

the categories even though they look similar in shapes.

4.3. Classification Results of the TLS Point Clouds
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For Scenes IV–VI, the point clouds are divided into multi-level clusters with the

sizes of 100, 300 and 500. To more clearly show the generalization ability of our

method,  one-third  of  the  clusters  that  belong  to  the  size  of  500 are  taken as  the

training data, and the point clouds in Scenes V and VI are used for the testing data.

Table 3 lists the number of points in Scenes IV–VI. Table 4 lists the classification

accuracy of Scenes V and VI. In Fig. 7, the light green points are on a natural terrain;

the  dark  green points  are  on high  vegetation;  the  bright  green  points  are  on low

vegetation; the red points are on buildings; the purple points are on hard scape; the

orange points are on the scanning artefacts; and the pink points are on cars. 

Table 3. The number of the points in Scenes IV-VI.

Natural

terrain

High

vegetation

Low

vegetation

Building Hard scape Scanning

artefacts

Car

Scene IV 3174149 1027837 592309 539935 1260888 7040 92873

Scene V 3507576 2537763 49680 1241838 762982 13899 65636

Scene VI 4924691 352455 172081 1611908 46140 751 403970

Table  4.  Comparisons  of  the  classification  results  of  Scenes  V-VI  in  terms  of

Precision/recall and accuracy. 

Scene V Natural

terrain

High

vegetation

Low

vegetation

Building Hard

scape

Scanning

artifact

Car Accuracy

our

Method

99.3/

97.4

94.7/

96.0

53.3/

89.3

93.9/

84.8

89.9/

78.5

88.2/

73.5

11.6/

26.1

91.1

Method I 97.7/

76.5

83.6/

95.2

15.8/

48.5

72.4/

71.5

82.9/

71.5

37.0/

12.9

27.1/

68.0

84.0

Method

II

96.7/

86.6

83.8/

95.2

45.8/

82.3

72.8/

73.6

82.1/

78.2

44.2/

17.9

33.7/

49.7

84.5

Method

III

96.1/

86.4

79.7/

95.0

45.9/

89.3

70.4/

69.4

80.1/

75.8

10.5/

2.8

34.9/

75.4

83.6

Method

IV

99.2/

98.8

89.4/

85.7

6/

56.7

88.9/

74.1

88.1/

66.4

52.7/

12.9

13.5/

54.2

85.3

Scene VI Natural

terrain

High

vegetation

Low

vegetation

Building Hard

scape

Scanning

artifact

Car Accuracy

our

Method 

98.6/

99.5

88.1/

66.4

4.0/

31.1

92.7/

98.4

66.6/

5.2

43.8/

2.1

1.3/

35.1

89.3
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Method I 76.9/

94.7

72.1/

17.7

14.8/

32.5

80.5/

79.8

28.7/

7.4

16.3/

3.8

1.4/

14.6

71.4

Method

II

75.9/

92.5

78.8/

16.3

26.5/

46.1

70.1/

81.9

39.6/

9.6

30.5/

5.6

3.6/

31.4

69

Method

III

78.2/

93.2

82.3/

14.7

19.1/

40.2

65.8/

82.4

32.4/

8.7

59.2/

10.7

5.2/

39.7

69.3

Method

IV

84.6/

93.7

85.4/

19.0

16.4/

37.5

69.3/

83.5

30.8/

7.8

44.9/

8.0

4.3/

35.5

74.2

Method I: the method in Wang et al. (2015). Method II: the method in Zhang et al. (2016) .

Method III: the method in Guo et al. (2015). Method IV: the method in Li et al. (2016).

              (a)                                   (b)

(c)                                (d) 

(e)                               (f)

Fig. 7. A portion of the point clouds of Scenes IV-VI, training data and classification
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results of Scenes V and VI. (a) Point cloud in Scene IV. (b) Training data. (c) Point

cloud in Scene V. (d) Classification results of (c). (e) Point cloud in Scene VI. (f)

Classification results of (e). The light green points are on the natural terrain. The dark

green points are on high vegetation. The bright green points are on low vegetation.

The red points are on buildings.  The purple points are on hard scape. The orange

points are on the scanning artefacts. The pink points are on cars.

The classification results on Scenes V and VI are not as good as those of Scenes

I–IV. In  the  two  scenes,  the  shape  features  of  some  of  the  categories  are  easily

confused,  such  as  high  vegetation  and  low  vegetation,  hard  scape  and  the  other

categories, especially for the hard scape, which is a class that is not taken as a special

object. The hard scape contains rocks that mingle with cars, fences that mingle with

vegetation, steles that mingle with cars or buildings, and so on. Even worse, there are

many hard scape points in Scene IV. To fit these points, the DNNSP is overfitting. All

of the above reasons lead to the low classification accuracy for the hard scape. Most

of the car and low vegetation points are classified into the hard scape. Although there

are many car points, only three car samples are in Scene I. The training data of the

cars  is  not  sufficient.  Additionally,  the  cars  are  similar  to  rocks.  Therefore,  the

performance on car classification is not good. The vegetation fences belong to low

vegetation, but the fences made of other materials belong to hard scape. They are very

similar in the point clouds; thus, the classification performance of the class fences is

also not good. The high vegetation and low vegetation are also confused. The reason

is that there are no clearly defined differences between them in terms of the shape. If

the  height  is  used,  then  performance  will  be  improved.  The  natural  terrain  and

buildings  are  classified  correctly, which  indicates  that  the  accuracy  is  high  if  the

sample size is sufficiently large. 

Compared with the other methods, our method achieves the highest classification

accuracy. Most notably, the accuracy improves at least 20% for Scene VI. This finding

means that the DNNSP has the ability to learn better feature representations from the

point-based features and improve the classification accuracy. Moreover, compared to

the  improvement  for  ALS point  clouds by the  DNNSP, the  improvement  is  more

obvious in complicated scenes.

4.4. Performance of the architectures in the DNNSP   

4.4.1 Classification performances of Net REF, Net RAF and spatial pooling

Different numbers of Net REF and Net RAF are utilized to present the influences of
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the nets on the classification. 

Table 5 lists the classification accuracy (%) of Scenes I-VI through the DNNSP

with  0–4  Net  REF  and  0–3  Net  RAF, with/without  spatial  pooling.  The  lowest

classification results are expressed using the actual accuracy, and are highlighted by

underlines. Other classification results are shown by the relative improvements to the

lowest  classification  accuracy. The highest  classification  results  are  highlighted  in

bold. The poor classification results are replaced by “-”. As listed in Table 5, for the

classification  results  obtained using  the  DNNSP with/without  spatial  pooling,  Net

REF is helpful, and the best results are all obtained by using at least one Net REF.

This finding means that the use of intra-relations of the point-based features in the Net

REF  is  helpful  for  improving  the  classification  performance.  One  Net  RAF  is

sufficient in the classification.  In most cases, the more Net RAFs are applied,  the

worse  the  classification  results  become.  When  the  number  of  points  increases  in

Scenes III,  V and VI,  the Net RAF improves the classification performance.  This

indicates that the intra-relations of the point-based features still have a little positive

influence on the classification. Additionally, simply concatenating the two types of

features, i.e. spin images and eigenvalue features, into a vector is not a good idea. In

future work, we will find a better  way to mine the inter-relations. In Scenes I-III,

sometimes the classification accuracy has a sudden decrease as the number of nets

changes. This situation does not occur in Scenes V and VI. We argue that the points in

Scenes  I-III  are  few and the DNNSP can easily  converge to a  local  minimum or

overfitting.

Table 5. The classification accuracy (%) through the DNNSP with/without spatial

pooling.

Scene I

    Net REF 

Net RAF 

Without Net

REF

One

Net REF 

Two

Net REFs 

Three

Net REFs 

Four

Net REFs 

Without Net RAF +2.9 /+3.7 +3.1 /+3.9 +3.1 /+4.2 +3.1 /+4.4

One Net RAF  93.8 /- -/- +3.8/+0.2 .+3.2 /+2.1 +3.2 /- 

Two Net RAFs +3.9/+1.6 +2.9/- +2.9 /- +3.5 /+1.4 +2.9 /+3.3 

Three Net RAFs +0.4/+1.5 -/+2.4 +0.9 /+2.6 +0.3/+3.5 -/+2.6 

Scene II

Without Net RAF +2.4 /+4.7 +0.9 /+4.7 +0.5 /+5.2 +0.3 /+5.4 

One Net RAF  - /- +3.9/- +1.9 /+2 +2.3 /+4 +1.9/- 

Two Net RAFs - /+3.4 - /- +3.1/- 92.6 /+4.7 +2.6 /+3.4 

Three Net RAFs -+0.4 - /+2.1 - /+3.4 - /+2.2 +1 /- 

Scene III
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Without Net RAF +0.8/+0.5 +1.6/+1.5 +2/+1.8 +1.4/+2.4

One Net RAF  +0.5/88.9 +1.7/+1 +1.4/+1.5 +2/+1.6 +1.6/+1.8

Two Net RAFs +1.8/+1.4 +1.7/+1.4 +1.9/+1.5 +1.8/+1.8 +1.9/+1.7

Three Net RAFs +1.8/+1.3 +1.7/+1.6 +1.5/+1.7 +1.6/+1.8 +1.9/+1.2

Scene V

Without Net RAF +4.8 /+4.8 - /- +7.7 /+2.8 +7.1/+6.9 

One Net RAF  +4.5 /+4.3 +4.7 /+6.1 +8.9/+8.8 +8.2/+9.3 +10.2/+11 

Two Net RAFs 80.8 /+0.8 +5.7+3.6 +2.9 /+4.9 +6.8/+7.3 +6.8/+8.5 

Three Net RAFs +2 /+1.5 +1.4/+3 +6.4 /+3.9 +8.3 /+6 +5.7/+6.7

Scene VI

Without Net RAF +6.2/+6.1 +6.1 /+6.1 +6.8 /+6.8 +6.6/+7.4

One Net RAF +4.1 /+4.4 +6.2/+7.1 +7.7 /+7.2 +7.1 /+7.4 +5.5/+7.7 

Two Net RAFs +1.6 /+3.7 +4.3/+8.8 +7.4/+6.7 +6.3 /+6.2 +6.1 /+6.6 

Three Net RAFs +4.4 /+4.9 80.4/+4.5 +2.6 /+6.8 +4.6 /+7 +7.2/+6.8 

The  DNNSP with  spatial  pooling  achieves  better  classification  results  than  the

DNNSP without spatial pooling, and it also enhances the classification performance

of all of the scenes. When the number of Net RAFs is determined, the classification

accuracy with spatial  pooling is  enhanced with an increase in  the number of Net

REFs,  but  the  classification  accuracy  without  spatial  pooling  is  random.  It  is

concluded that with the help of spatial pooling, the DNNSP can be stacked deeper to

obtain better classification performance through more Net REFs.

4.4.2 Classification performance by separating the body and margin points

To show the advantages of separately using the body and margin points for the

point cloud classification, we use all of the points without distinguishing the body

points and margin points to classify the scenes. We observe from Table 6 that the

classification performance obtained using the body and margin point  separately is

improved  for  all  of  the  scenes,  especially  for  Scenes  V and  VI  which  are  more

complex. 

Table  6.  The  classification  accuracy  obtained  by  using  all  of  the  points  without

distinguishing the body points and margin points.

Scene I Scene II Scene III Scene V Scene VI
98.0% 97.5% 89.6% 86.3% 82.9%

4.4.3 Classification performance by using all of the levels of clusters

To evaluate the effectiveness of the extracted common features in the DNNSP, we

take the point clusters with the smallest size as the input. The classification results are

listed in Table 7. From Table 7, it is observed that the classification accuracies are
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obviously lower than those obtained using all levels in Scenes I–III, which shows that

the common features are helpful for the classification.

Table 7. The classification accuracy obtained by using clusters with one level.

Scene I Scene II Scene III Scene V Scene VI
95.6% 94.7% 89.2% 90.3% 88.4%

5. Conclusions

The  features  learned  by most  of  the  current  deep  learning  methods  can  obtain

high-quality  image  classification  results.  However,  these  methods  are  hard  to  be

applied to  recognize 3D point  clouds due to  unorganized distribution  and various

point density of data. In this paper, we have presented the DNNSP to classify outdoor

point clouds without rasterization. To ensure that the point-based representations are

discriminative and robust, the DMst-based pooling utilizes spatial information among

points in the point clouds. The body points and marginal points in the DNNSP are

handled  separately  by  configuring  different  weights  for  them  in  the  feature

representation. In this way, the DNNSP can learn the feature representations of points

from multiple  levels,  which  makes  the  point  cluster-based  feature  representations

robust and discriminative. The experimental results demonstrate the effectiveness of

the DNNSP for point cloud classifications. 

In future work, we will extend the DNNSP to directly learn features from the raw

point  clouds,  and  employ  our  method  to  other  applications  such  as  3D  object

recognition or retrieval.
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